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CORRECTIONS FOR SIOTTED TUNNELS OBTAINED BY THE
SUBSTITUTION OF AN EQUIVAILENT HOMOGENEOUS
BOUNDARY FOR THE DISCRETE SIOTS

By bon D. Davls, Jr. and Dewey Moore
SUMMARY

The solid-blocksge interference for a doublet on the tumnel axis
and the boundary interference for 1lifting wings in cireulsr, rectangular,
and two-dimensional slotted tunnels have been calculsted by substituting
an equivalent homogeneous boundary for the physical boundary of discrete
slots. In the case of small wings, the interference calculated with the
assumption of homogeneity has been found to be conslstent with that cal-
culated far the discrete slots for as few as four slots in a circular
tunmnel.

Furthermore, available experimental results for blockage interfer-
ence are consistent with the results of the present analysis. As a con-
sequence of the assumption of homogeneity 1t i1s possible to express the
interference of multislotted tunnels as a function of & single parameter
which combines the effects of two physical varishles: the ratio of open
to total s:hotted va]J. p_erimeter anitbe number of slots. A curve is
presented. which permits the rapid evaluation of this 3 parameter and numer-
1cal results for 1lift and blockage Interference are plotted sgalnst the
parameter.

INTRODUCTION

Several investigators have found that in a wind tunnel with bound-
aries which ere partly open and partly closed, the boundary Interference
on the lift of a wing can be reduced nearly to zZero. References 1 to 5
deal with the case of a doublet in the center of the wind tummel, while
references 6, 7, and 8 consider the effects of wing span. There are
several reasons vwhy it would be desirable to have a wind tunnel with
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zero=lift correction. TIn the first place, the necessity of applying the
corrections wogld B eliminated, although this, in Itself, is not of
large importance as long as the necessary correctlons sre known. More
important is the fact that the pressure distributlons cannot be corrected,
and the distortion of both spanwlse and chordwise pressure distributions,
as a result of boundary Interference, places a limitation on the size of
model which can be tested 1n a glven wind tunnel.

The primary interest in partly open or slotted wind tunnels, how-
ever, 1ls connected with the wvery different problem of wind-tumnel choking
at high subsonlc Mach numbers, which is a result of solld blockage inter-
ference and which pleces & very severe limitation on the permissible
model size for testlng in closed wind tunnels. The blockage correction
for a circular slotted tunnel (a wind tumnel in which the open pert of
the boundery is distributed around the periphery in the form of several
longitudinal slots in an otherwise solid boundary) has been considered
in reference 9, whlch indicates theoretlically that slot confilgurations
exist for which the blockage correction is greatly reduced. The experi-
mental results that are also included in reference G show that slotied
tunnels can be used for aerodynemic testing 1n the transonic speed range.
The conventional closed and open tunnels are both unsatisfactory in this
speed range, the closed tunnel because of choking and the open tunnel
because of the excessive power requirements and the large boundary inter-
ference. Much effort has since been expended in the experimental devel-
opment of transonic slotted tunnels, and several large tunnels of this
type are presently in operstion (refs. 10 and 11) or in construction.

A knowledge of the lift-Interference corrections for the slotted tunnels,
as well as the blocksge corrections, 1s thus of present interest.

The 1ift interference 1n slotted tunnels has been considered in
reference 12. This work has been extended in reference 13 to include
wings of finite spen, and numerical results are presented for several
configurations of practical interest.

The calculations required to determine blockage and 1lift correc-
tions, for a particular slotted-tunnel configuration, by the methods of
references 9 and 13 are very lsborious especially for tunnels with a
large number of slots. In order to cobtain a general sclution for this
problem, Dr. A. Busemann of the Langley Laboratory has suggested that the
problemg of both 1ift and blockage Interference be treated mathemstically
from the standpoint of a homogeneous boundary, with the slot effect uni-~
formly distributed over the surface of the boundary. It was reasoned
that at some distgnce from the boundary, in the regilon of the model, the
flow would no longer show the effects of the individusal slots, particu-
larly if the actual boundary contaslned a large number of slots. Further-
more, the wind tumnels which are now in use contain several slots. It
1s felt that thils is desirasble in order to increase the uniformity of the
interference. This paper will treat the problem in the suggested manner,
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beginning with the development of a sultable boundery condition to
represent mathematically a homogeneocus boundary which has the same flow
characteristices, at a polnt 1n the flow sufficlently removed from the
boundary, as the actusl physical boundary of altermate open and closed
portions of the wall. Numerical results will be presented for circular
tunnels with slots uniformly distributed esround the circumference, for
rectangular tunnels with unlformly distributed slots in the top and
bottom walls, for rectangular tunnels with the slot distribution deter-
mined by a transformation from a uniformly slotted circulsr tunnel, and
for a two-dimensional tunnel.

The resulis of this paper are derived on the basis of an Incompress-
ible potentlsl flow. The subsonic linearized compressible-flow theory
shows that wind-tunnel lift-correction factors are not affected by Mech
nurber; therefore, the lift-correction facltors presented in this paper
should apply directly to subsonic compressible flows, at least within
the range of applicability of the linearlzed theory. The effect of com-
pressibllity upon the blockage interference 1s to increase the axial-
interference veloclties with increasing Mach number in proportion to the

factér Z——-—;2537§- (ref. 9).

1-M

SYMBOIS

The symbols A,, B, C,s Dy Cips Cops C3n, Cyns Axs Bys Agts Bgis
Cgts Dgt Trepresent serles coefficlents.

A area
b seniwidth of rectanguler wind tunnel
c nondimensional restriction constant

ol

chord length of a two-dimensional airfoil

cy section 1ift coefficient

C cross~sectional area of tunnel

Cy, 1ift coefficient

d " 8lot spacing

h semlheight of rectangular or two-dimensionsl tunnel
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stagnation pressure
restriction constant
doublet strength
number of slots
static pressure

open ratio of slotted wall (ratio of slot width to slot spacing)

radius of & cilrcular tunnel
wing ares
thickness of slotted wall

x-component of additlonal velocity due to presence of a model
in wind tunnel, U - ug

free-stream velocity at upstream infinity
x~component of velocity at any point

y-component of additional veloclty

component of additional velocity normal to surface of wall

z—-component of additional veloclty
complex velocity in Z-plane

distances in Cartesisn coordinste system
complex plane, x' + iy'

circulaetion around a wing

correction factor due to 1ift,

& 5!

L
SCy,
complex plane, & + iy

Cartesisn coordinates in {-plasne
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angle 1n polar coordinates
height-width ratioc for rectangulsr tunnel

constant appearing in transformation from rectangle to circle

csC r

2o
incompressible-flow velocity potential
radisl distance in polar coordinates
density of air in wind tumnel

ratio of vortex span (effective wing span) to dlameter of cir-
cular tunnel or width of rectangular tunnel

Subscripts:

0

1

free-stream conditions at upstream infinity
due to model in free air

due to presence of tunnel bounderies
circular tunnel

in direction normal to wall surface
rectangular tunnel

summation indices

due to & row of vortices

signifies additional term required to satisfy boundary condi-
tion at slotted walls

total

BOUNDARY CONDITIONS

Wall with discrete slots.- Longitudinal asnd transverse cross-

sectional views of a slotted wind tunnel are shown in figure 1. In the
longitudinel view exaggerated stresmlines sre drawn to indicate how the



6 SR NACA RM L53EOTb

alr in the vicinity of the wall flows out and 1n through the slots as 1t
passes the model. The chamber surrounding the tunnel 1s malntalned at =
pressure equal to the free-stream static pressure of the flow inslide the
tunnel. The difference between thils pressure and the aversge local pres-
sure of the flow just inslde the well causes the air to move out and in
through the slots. The boundery conditions at the slotted wall for this
flow conflguration will now be considered.

Consider a set of axes in Carteslan coordinates which are fixed with
respect to a model in the wind tunnel, while the alr flows by with veloc-
ity components U, v, w. Furthermore, let U = u, + u, where u, 1is

the free-stream veloclty at infinity. The pressure at a point inside
the tunnel at the wall is given by

= Pf, 2 2
p=EH- E(uo + 2uju + u© + ve + w2)

The free-stream pressure p, is given by

Assume now that by some means the pressure Just outside the wall is main-
tained at p,; then, the pressure difference across the wall 1is

Ap =P =Py = = g(?uou + U+ Ve o+ wz)

Next, assume that the relastionships between the model size and shepe and
the dlstance to the wall are such that u, v, Ww are all much smaller
than u, at the wall. The relation between the pressure dlfference and

the axial veloclity inside the tunnel then becomes
Ap = =pugpu (1)

This is a known result of the smalli-disturbance theory. Note that the
small-disturbance assumption is required not in the fleld of flow near
the model but only at the walls.

It is now required to find an expression which relates the pressure

difference across the wall to the flow through the slotted wall. This
expression, combined with equation (1), will establish the relationship



NACA RM L53E0Tb - 7

between the axial velocity Just inside the slotted wall and the flow
through the slots. In order to find such an expression it will first be
necessary to study the energy 1ln the nelghborhood of the slots. This
energy 1s basic to the problem, for the essential mechanism of the slotted
wall 1s that kinetlic energy is stored in the air which flows ocut through
the slots. This energy is later returned to the flow when the air flows
back through the slots into the tunnel. Consider a thin slotted wall 1n
a fleld of flow with a uniform veloclity normel to the wall at infinity.
(See fig. 2.) Because the flow pattern is the same for each slot 1t is
permissible to study =& single channel such as the one in whlch spproxi-
mate streamlines have been sketched in figure 2. The kinetic energy
enclosed in a region of this flow bounded by a transverse plane at -xo',

by the "walls" of the channel, and by the slot is given by

Kinetic energy = lﬁp P éﬂ dA

The reglon of Integration may be considered to consist of a surface of

unit depth normal to the plane of the page which includes the dashed line
shown in figure 2. The component of velocity normal to the closed por-
tion of the slotted wall must be zero. With regard to the open portion, the
disturbance potential willl be assumed to be zero at the slots, in con-
formity with previous papers and with the classical practice in treating

interference in open tunnels. Because %9—= O at the channel walls,
n

and because @ = 0 at the slot, these two regions contribute nothing to
the integral. With regard to the transverse plane at -xol it is clear

that if this plane is sufficlently far away from the slot the potential
will have a value Q_XO: which 1s essentially constant 1In this plane.

Also,
O gp = voa
-x_ ' on n
O

the quantity flow. Thus,

1V A

Kinetlc energy = %-p¢ n

_xo
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In order to complete the evaluation of the kinetic energy it is
necessary to determine the value of the potential ¢_, 1. Let the coor-
(o]

dinate origin be taken in the plane of the slotted wall at the center
of one of the solid sectlons and consider the flow to the left of this
slotted wall. With the assistance of reference 14, the potential of
this flow is found to be

8

k
P = vné% log, csc % ry - x' + % Cge B cos kByJ) (2)

where kg = ggﬁ, d 1is slot spacing, a 1s slot width, and r, = %.
The plane at -xo' is sufficlently far from the wall that the last term,

which falls off exponentially as x' becomes more negative, may be dis-
regarded. Thus,

Poxyt = Vh(% log, csc g ro + xo')

The insertion of this value of Py in the previous kinetic-
energy equation results in

Kinetic energy =

n =

p(% log, csc %ro + xo') vnEA

In the absence of the slotted wall, the kinetlc energy per unit aree of
the flow inside the region of integration would be

% pxochE

Consequently, the portion of the total energy which may be regerded as
being due to the presence of the slotted wall is % vahE per unit wall

aree, where
1 = %.Loge csc % ro (3)

Note that the quantlty 11 hes the dlmension of length.
A
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Ejuivelent homogeneous wall.- Consider, now, the flow field that
would result in the region between -xo' and the wall if the slotted

wall were replaced by an imsginsry homogeneous wall of zero thickness
through which potential flow is possible and which is characterized by

the existence In the local flow of an energy %—plvhz per unit wall ares

associated with s local normal velocity v,. The veloclty of this flow
field, st —xo', will be essentially'the same as that of the slotted-

well flow fileld; furthermore, the total kinetic energies between the
planes at -x,' and at the walls will be the seme. For the purpose of

calculating the flow to the left of -x,', therefore, the homogeneous
wall is eguivalent to the slotted well.

The result which has been obtalned by studylng the relastively simple
flow from a source at -» 1s that there is associated with the flow
through the slots a kinetic energy that is s function of the dimensions
of the slotted wall and of the average velocity normal to the wall, and
that this energy may be consldered to be concentrated at the plsne of the
wall for the purpose of determining the potentisl of the flow at a point
sufficlently far removed from the wall. If the singularity is located
et a finite distance from the wall, or if singularities of types other
than sources are introduced, there will be a veloclty component parallel
to the wall in addition to the normal component v,. Application of the

principle of superposition shows, however, that the energy which is asso-
ciated with a given flow normal tc the wall will not be affected by the
presence of edditionsl wvelocity components parsliel to the surface of the
wvall. It is necessary, though, that the slot spaclng be small enough so
that the difference in flow through adjacent slots 1s smell. Thus, the
analysis will be appliceble only to tunnels with seversl slots. With
thls qualificstion the homogeneous wall will be equivalent not only to
the slotted wall of figure 2 but alsc to the slotted wind-tunnel wall of
figure 1 (section A-A) insofar as 1ts effect on the model is concerned.

If the slotted wall of figure 1 1s replaced by an eguivalent homo-
geneous wall, the energy per unit areas at the wall is %-plvh? and the

momentum associated with this energy is plv, per unit wall area. An

individuael particle of ailr which follows the cuter streamline shown in
figure 1 flows out and in through the wall as 1t passes the model 85 a
result of alternste outward and inward sccelerations due to the pressure
difference across the slotted wall. The direction of flow of the normal
component of velocity does not, in general, correspond to the direction
of the pressure difference across the wall. Instemd, it 1s the direction
of the normal acceleration which corresponds to the direction of the
pressure difference. This pressure difference, which asacts in a direction
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normal to the wall surface must, 1n the potentlal flow, be equal to the
rate of change of the momentum assocliated with the presence of the slots.
Thus,

Mp = %(plvn) =p ];D—t(lvn)

Although the quantity 1 1is constant In time at a given point on the
wall, it 1s left under the differentliation sign in order not to exclude
the possibllity that the slot confilguration mey vary from point to point
on the tunnel wall. The only restriction which is placed on the axial
or transverse veriatlons of 1! 1is that they must not be too rapid,
because the equation for 1 has been derived on the basis of a two-
dimensionel flow and a uniformly slotted wall. The derivative is glven

by

l—%(lvn) = %(Ivn) + U %(Zvn) + v %(Zvn) + w a—az-(Zvn)
Since the flow is steady and the slot configuration 1s constant in time

3 _ o
when referred to the fixed axes, E(Zvn) = 0. If now -a—y(zvn) and.

e S
a—z-(lvn) are assumed to be of the same order as Se (zvn) (or of higher

order) then the acceleration 1s given by

o% (%) =~ Ho 5 (1)

to the same order of approximation ss was used in obtaining equation (1).
The pressure difference across the wall 1s thus related to the wvelocity
through the wall in the followlng manner:

_ 3
4p = pUy g;(zvn) (4)
Equating (1) and (4) for the pressure difference results in

-u = a—ax- (Zvn)

—
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Let the potentlal of the flow be given by ¢ = -uyx + 9, where ¢ 1is

the disturbance potentlial. In terms of this potential the preceding
equation becomes

§§,= - E%;Q.ggg or g%é?-+ 1 g%) =0

Integrating this equation in the x-direction along the wall gives
¢+ 1 gi egqual to a constant. One of the boundary conditions which
n

must be satisfied by the wind-tunnel flow is thaet there be no disturbance
at infinity upstream, so the constant must be zero. Thus, the boundary
condition at the wall becomes

q>+lg;§=0 (5}

At this point let it be emphaslzed that, although this condition must be
gatisfied everywhere on the boundsry, all the symbols, including 1,
refer to only local values of the quantities represented. Thus, 1 has
been left free to vary in both directions on the surface. The boundary
condition may therefore be used in the study of wind tunnels in which
the slot width 1s varisble 1n the axial direction. Furthermore, adja-
cent slots may be of different width or different spacing.

Although only = plsne wall was conslidered in determining the rela-
tionship between the wall dimenslons and the wall-restrictlon con-
stant, 1, it is possible to show that the same relationship holds for

a circulasr well. Consider the transformation ¢ = eZ applied to the

region between y' = d/2 and y' = -d/2 in the fiow field shown in fig-

ure 2. By using polar coordinstes (r,8) in the {~-plane, there is obtained
t

r=eX and 8 =y'. Thus, the line x' = Q0 +transforms into an arc of &
circle of radius 1. (See fig. 3.) Because of the linear transformation
between y' &and 6, the open ratio of the wall is unchanged by the trans-
formation. The source of the flow in the Z-plane at X' = -= transforms
in the {-plane into a source at r = 0. The line X' = » +transforms Into
the arc r = =. The expression for the potential inside the wall is
obtained by applying the transformation to equation 2.

[+2]
k. lo r
Q = Vh(%'loge esc g-ro - loge T + %= E Cge B €e Toon E%Fg) (r < 1)

s=1
(6)
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The potential of the source at the origin in the gbsence of the wall
would be @ = ~-v, log, r. Thus, it follows that the additional poten-

tlal at & polnt inside the wall, due to the presence of the wall, is

log, csc L r

nearly o 5 Yo Consequently, the restriction constant 1

d
Vn 3?
for a cilrcular tumnnel is obtalned in the same manner as for a tunnel
with plane walls. The function log, csc g-ro is plotted in figure k.

Consideration of equation (6) will give some 1dea of the degree of
approximation involved in assuming the additional effective energy due
to the presence of the slots to be concentrated in a plane at the wall.
As an example, calculations have been made for a clrcular tunnel with

8 slots, for which p = T, where pu = csc g Yoo (This gives an open

ratio of slightly over 0.09, which is in the range of practical interest.)
Figure 5 shows the potential given by equation (6) plotted against the
radisgl distence from the center of the tunnel. The calculations were
made glong radiael lines through the center line of a slot (S = %) and
through the center line of a panel (8 = 0). Also presented is a curve
calculated from the approximaste or homogenecus wall equation

loge u - logg T (7

p=2

Inspection of figure 5 shows that the gpproximation is quite satisfactory
for the flow in the centrsl part of the tunnel (say r < 0.6). For tun-
nels with more then 8 slots, the region of velidity of the spproximation
will be even larger.

ANALYSIS

Circular Wind Tunnel

Lift interference.~ Consider a lifting wing symmetrically located
in a circular wind tunnel which hes a homogeneous boundery through which
potential flow is possible. Let the wing be represented by a single
horseshoe vortex. The downwash at the wing will be determined, in the
classlcal manner, by flnding the downwash ln a tunnel cross section far
downstream due to a palr of vortices of opposite sign with clrcula-
tion I'/2, where I' 1s the circulation of the horseshoe vortex in the
tunnel. The disturbance potentlal in the plane willl be taken as P + Pss

[
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where @ 1s the potentlal of the vortices in a free field and @ 1is

the Interference potentiasl due to the walls. All length dimensions will
be made nondimensional by dividing by the tunnel radius R. The boundsary
condition at the wall (p = 1) is then

At BQ%) =0 (8)

+ + cle— + —=
vhere c¢ = é, the nondimensions] restriction constant.

The interference potentlial ¢, must satisfy the equation ‘vzmz =0

throughout the interior of the tumnel. In polar coordinates this equa-
tion becomes

Foo 1%, 1 ¥,

3p2 P dp 2 3g2

By the method of seperation of variables, the following family of solu-
tlons can be obtalned:

(=)

Pp = Z(Cln sin nd + C,, cos nﬁ) (Cjnpn + Clmp-n)
n=0

Since @, must be finite everywhere inside the tunnel, 1% must be finite
at p =0 and, therefore, Cy, =0. Let 6 =0 be In the plane of the

wing. Then, because of the symmetrical location of the wing, it is
apparent that @2(6) = ¢2(n - 8). The cosine terms, which do not satisfy

this requirement, are omitted by setting Co, = O (except when n = 0).
The solution may now be put in the form

[

qxp_:ﬁAo+ZAnpns1nne (9)

n=1

The potential of the vortex pair in e free field is, in polar coor-
dinstes,
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_ _ I -1 f2pc sin 8
P = - ten <p2_62) (10a)

where o 1s the nondimensional semispan of the vortex palr. Also,

(10b)

an _ I 20 sin 6(p2 + 02)
Lige

» 2 '
P (p2 - 62) + 4p2a2sine

In order to find the interference, equations (10a) and (10b) can be
expanded in Fourier series at the position of the wall. These series,
together with equation (9), can then be inserted in the boundary condi-
tion, equation (8), in order to determine the constents A, in the dis-

turbance potential. The expansions for ¢1 and. ggl et p=1 are of
/o]
the form
M o) = -ten~l 208I08 E B, sin 06 (11)
1 -0
o0
b 991 _ 200+ oPsine  _ ¢, sin ne (12)

L 9 (1 - 02)2 + 4pPsin®e ‘m=1

No constant terms sppear In these expansions so A, = O. By substi-

tuting (9), (11), and (12) in (8) the following equation 1s obtainéd for
each value of n:

An sin nd + Bn 8in no + ann sin n6 + ch 8ln n6 =0

An - . Bn + ch (15)

l+4+ cn

After A, 1is found, there remains the problem of determining the

vertical interference velocity, and from it the Interference factor B&.
The vertical Interference velocity along the line €8 = 0 1s given by
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_ 1% N el
Vs BT T ) (14a)

n=1

The average interference velcclty between the orlgin and the point (U,O)
is

g o
o — 1 r Nne
"2—‘Ef i) el
0 n=1

Vo = - f;Z A on-1 (1)

The interference factor & as glven in reference 15 can be written as

= W2C
uoSCy,

where
C cross-sectional area of tunnel (x for the tunnel of unit

radius)
S wing ares
CL 1ift coefficlent

" U, tunnel free-stream velocity at upstream infinity

The circuletion is relsted to the lift by
har

so, = 49l

L Uy

Using this relstion there is obtained & = E%?;ﬁé. Substituting for W,

from equation (1ib)
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l+cn

8 = 11_62 Bn + Cp n-2 (15)
n=1

Instead of actuslly msking the expansions indicated in equations (11)
and (12), 1t is possible to infer the values of the constants B, and C,

from the known corrections for open and closed clrcular wind tunnels.
For a closed circular tunnel Silverstein and White (ref. 15) give the
equation :

5 = —L_10g, Lt0o
1602 1 - o2

Making use of the series expansion (ref. 16)

x + 1\ _ 2 =
l°8e<x__i) = S E (n=1,3,5,...)
n=1
the following equatlon mey be written after setiing o° = %:
= n
5 = i%-g 2 %f cn-? (n = 1,3,5,...) (16)
n=1
But equation (15) gives, for c = =,
= ¢
O o 5 = = E -4 go-2 1
i€ & (17

Because equations (16) and (17) must agree, and since they can only agree
if the series cocefficients are identical, term by term, then

C, = 200 (n=1,3,55000)

(18)
2,4,6,...)

Ch,b=0 (n
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The correction for an open circular tunnel is simply the negative of
equetion (16). TFor this case (e = 0) equation (15) glves

. 1 -2 =
5 = EE; Bpa® <=0 (19)
n=

Comparison of equations (16) and (19) shows that

Bn:..%g_n (n = 1,3,5,...)
(20)
B, = O (n = 2,h,6,...)
Substituting equations (18) and (20) in (15) results in, finally,
= -2
8 = %—z; (S‘:l ; :31')022 (n=1,3,5...) (21)
n=

This correction is plotted as a function of the nondimensionsal restric-
tion constant in figure 6 for wings of small span.

For the circular tunnel the nondimensional restriction constant is
gilven by c¢ = %— logg M, '_Where d 1s the angle between two successlve

slot center lines. Since the number of slots N around the circumfer-
ence of the tunnel is given by 2x/d, then

c=%logeu (22)

for a clrcular wind tunnel.

Sclid-blockege Interference.- Consider next the problem of solid-
blockage interference in the circular wind tumnel. The solid body in
the tunnel is represented by & doublet with axis alined with the axis of
the tunnel cylinder, and located at the origin of coordinstes on the axis
of the tunnel. The flow potentisl is agasin represented by Py + Pps

where P is the free-fleld potentisl of the doublet and Ps is the
interference potential due to the presence of the homogeneous well. The

; __
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boundary condition which must be satisfied at the wall (p = 1), for all
values of 6 and all values of x, 18 sgain given by equation (8).
Laplace's equation in cylindrical coordinates, which must be satisfied
by @p, 1s

2
3“pp N
Jp=

in the case of circuler symmetry gbout the longitudinal axis x. The
solution of this equation which will be used for the problem under con-~
sideration is

(23)

where Io and. Il are the modified Bessel functions.

The free-fleld potential of the doublet is ¢, = - X

3/2°
(x2 + p?)
The value at the well of this potentlial and its derivative 1s now expanded
in Fouriler series form.

1) = - By sin kux (24)
( l)p— ( ) 7 ;
% __—_————375 sin k“x dx = & QO(?“) (25)
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d
<%> ) = Z Cy sin XEX (26)

=l (&2 1)5

=g. _i_—smm.dx
LO (x2+1)5/2 L

The functions Q, and Q; are defined by equations (25) and (27). Upon

substituting the preceding equations into equation (8), the boundsry
condition becomes

Zz ( )sink’fx+ZAkI( )sinm:r

o0

c E -%Ql(hf—)sin % + c é == Akll(k")sin <19, PN

k=0

tafy) e

For each Ay there results an equation

Ezo - cqy %)]

Io(r) +e Il(‘kf)

Substituting this in the equation for the Iinterference potentlal gives

L e

o | To(5E) + o B 1 (¥F) .
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If, now, the fundamental wave length of thils expression L is allowed
to approech Infinity, the surmation can be replaced by an integral. The
necessary relaetionshlp can be obtained as follows:

Zo ?. F(k'l_,.r)d(kfﬂ) fm 2 p k_ﬂ)d(l_g_)
Ll—i>moo L ) (%) ) al%

Since k +takes only integer values, the interval d(%%) is simply /L.
Thus,

e ) - ) 2r(E(E)

L
L— > =0

(See, also, ref. 17.) By using this relationship end setting gq = %F,

equation (28) becomes

_ 2|%(a) - eQy(a) | )
P = x| T (q) + CQIl(qllI"(qp)Bin ax dq (29)

The remelning task 1s to evaluate Q, and Q. If equatlons (25)

and (27) are integrated by parts the results can be brought to the form
(see ref. 18)

Q(a) = aky(q)

Q,(a) = &%k, (a)
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The final result for Ps 1s, then,

o | (@) - ea®Xy(a)
%2 = ’?L [IZ(q) + cqI;(q) To(ap)sin ax dg

The interference velocity ls

% 2| aleai(@) - K@)
27 " & T ,Tfo 4 l;qll(q) + I,(q) Tolap)cos ax da (20)

This equation 1s for s doublet of strength ﬁ5-= 1 in a tunnel of
x

unit radius. For the general case, at the origin,

up = L caky(a) - Xo(a) o,

- 2xSRJ o cqIy(q) + Iy(q) (32)

where R 1s the tunnel radius. The axial interference veloclty is

1 \1/2
plotted as a function of (5—173)
chosen becguse it results in en approximastely linear varlation of the
blockage interference. The values were obtained by mechanical integra-
tion of equation (31). Fortunately, the value of the integrand converges
rapidly toward zero with lncreasing gq. At q = 5, for instance, the
value of the integrand was 1/2 percent or less of its meximum value in

the calculations which have been made.

in figure 7. This parameter is

Rectangular Wind Tunnel With Top and Bottom Wells Slotted

Lift interference.- Consider a rectangulser wind tunnel of semiwidth
unity and semiheight A. Inside the tunnel is & vortex palr of semi-
span o located with the span parallel to the width (y) axis of the
tunnel and with the center on the center line of the tunnel. The verti-
cal walls at the sides of the tunnel are closed, but the horizontal walls
at the top and bottom, with nondimensional restriction constant 1, are
partially open. The boundary condition at the closed side walls (y = +1)
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is, of course, %9-= 0. This condition is satisfied by a horizontal row
Y

of vortices along the plane z = O (the reflected images, out to y = too,

added to the vortex pair inside the tunnel). The potentlial of such a

row is given by

tanh L 2
Py ~tan~1 + tan=21 e . (32)
hﬁ E(y - a) tan g(y + o)

and the wvertical derivative by

;92 _ Il sin x(y - o) + sin x(y + o) ;] (33)

8{ cosh xz - cos n{y - 6) cosh nz - cos =n(y + o

To the potential g, another potential ¢y 1is added in order to

satisfy the boundsry condition at the horizontal walls. The total poten-
tilal Pp = Q. + O must satisfy the conditlons

A y=a 2 - (34)
d _

At z = A Pp + 1 Sgi = | (35)

At 2z = =A Pq - 1 égz-= 0 (36)

Since @, already satisfies equation (34), ¢y must also satisfy (3h).
A solution of Laplace's equation which meets this requirement is

= Ji.j{::cos nny(An sinh nrz + B, cosh nnz) + Az (37
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Because ¢, 1is an odd function of 2z and 1s an even function, it

or
oz
is necessary that ¢g; be an odd function of 2z In order that both equa-
tions (35) and (36) may be satisfied. Consequently, B, = O, and

~ (38)

Now, let equations (32) and (33) be expended in Fourier cosine series
at the boundery =z = A. Then,

P = &ch cos nuy (392}
n=

a‘:Pr__p_ =

el M;Dn cos niy (39v)

(It is spparent from the form of eguation (33) that there can be no con-
gstent term in equation (39b).) If equations (38) and (39) are substi-
tuted in equation (35) the following coefficient relationships are found:

Co + A + 1A, = O (n=0)
C, + ID, + sinh nmA + cosh nxA = O (n # 0)
n n A‘D.
Thus,
c
- - 0
Ao A+ 1
(ko)
Cp + Dy

sinh nxA + Inx cosh nxA
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Let @p = ¢ + @ where again @, 1s the free-fleld potential of the
vortex pair inside the tunnel and Qo i1s the interference potential.
From the free-field potential of the vortex pair

Lr W~ = - EE.an - Yy -0 _ y+a
r ' dz (y - 0)2 + 22 (y+ 0)2 + 22

Thus, the interference velocity at any point (y,z) is

bt o _x sin w(y - o) _ sin n(y + o) _
r 2 2l|cosh xz - cos n{y - 0) cosh nz - cos n(y + o)

>3

E nxA, cos nwy cosh nxz - A, - y-d > +

n=1 (y - 0)2 + z

y+ 0

(y + 0)2 + 22
(41)

The average interference velocity In the plane of the wing (z = 0) is

(o]
— l
W, E W
2% 35 |42 dy

In order to evaluate this integral, obtain first

oo

Yt 1 - cos n(y - o)

_ Wo dy = 1o -2 An sin nxy -

r 2 g‘E’l—cos:t(y+or) Z v
-y n=1

(y + 0)?

y + lo
o s (y - 0)2

As y approaches o the first and last terms approach minus and plus
infinity, respectively. In order to eliminate the I1ndeterminateness,
the two terms are combined and the cosine is expanded in series form.
Finally, the limit is taken as y approaches o.
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14m (y + 0)2 1 - cos n(y - a) _
y_N,l--cosst(y+0') (y_a)e

2y - 02 oMy - o)t

1im (y+ 0_)2 1l -1+ > l].', + ¢ o . _
y—»g 1 - cos w(y + o) (y - 0)2
b? g2

—_— T
l - cos 2x0 2

By using this 1imit, the average interference veloclty becomes

— = Coo
Y2 = 14-1\:0 ge(ﬁ;fi.n :n:o') - Zn—l An sin nxo + A+ 1 (k2)
VoA
For this rectangulsr tunnel & = I‘o'; 80
= A _ %o
Lycg2 loge(sin xu) ZAn sin nto + == 3y (7\ + 1) (43)

Correctlion factors are plotted as a functlion of the restriction
constant for several values of o in figure 8(a) for a square tunnel
(A = 1) and in figure 8(b) for & tunnel with A = 0.5. The nondimen-

sional restriction constent is defined as c¢ = hl’ where h 1is the semi-

height of the tumnel. For the tunnel under consideration then, c¢ = 7—3—

The value of ¢ for a rectangular tumnel of height-width ratic A with
N slots in esch horizontal well is given by

c=-—g—zn|.l, (h'll')
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Solid-blockage interference.- Consider next the problem of solid-
blockage interference in the rectangular wind tunnel with top and bottom
walls slotted. The solid body in the tunnel 1s again represented by a
doublet with axis alined with axis of the tunnel and located at the ori-
gin of coordinates on the tunnel axls. The boundary condition at the
closed side wall (y = %1) is gc’i = 0. This condition is satisfied by

Y
& horizontal row of doublets with axes alined with the axis of the tun-
nel and placed along the line x=0, 2 =0 at y=0, y=12,
y=+4%k, . . . y = t». The potential of such & row is given by

[

Pr = - %Z X (45)

K=o Ey + 2k)2 + 2 + xﬂ}/2

and the verticael derivative by

o0

¥

k=00

- o Zzx (46)
MZ KY+ 2k)2 + 22 + _]5/2

The total potential ¢qp = @, + @5 must satisfy equations (34), (35),
end (36). As bvefore, ¢ must satisfy equation (34). A solution of
Laplace's equation which meets this requirement is

Pg = ﬁ-;; Agy coshE\/(isﬂ)2 + (—%‘—)2:] +

Bgt, sinh.Ed(B:r)2 + (%"5-)2] cos sny sin t—;_:ﬁ (37)

As In the case of 1ift interference P 15 an 0dd function of 2z and

3,

3% is an even function; therefore, ¢y must be an odd function of =z

in order thst both equations (35) and (36) may be satisfied. Conse-
quently, Bst = 0, and
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. = ZZ Agt COBh[J(Bx)E ix ﬂcos sxy sin -1-5’1"—" (48)
a% = ﬁ‘z (sﬂ)E (%‘) sinhl:\l(sﬁ)E (t“)]cos sxy sin tix

(49)

Now let equations (45) and (46) be expanded in Fourler cosine series
at the boundery =z = A. Then,

= - & tax
(‘Pr)z___R = " Ly ; L Cgt cos sxy sin T (50)
8= —
<%)z=7\ = ﬁ ; tZO Dgt cos sy sin -1'-'%2‘- (51)
8= —

where C and D are given by
st st

upf x sin 3—’]5—" cos siy ax ay
k~-°° Ey +26)2 + 22 + ]3/2

i/2 (s =0
where p = l/ (: y og
o = 1I-p tr: f °_ cos x cos sry dx dy (52)
“-°° \’(y+2k)2+7\2+x2
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)y 3Ax sin —L cos Bxy
Dgy = P é ax dy .
=—o0 q[y + 2k)2 + A% + x:|5/

1l NnL
4D\ fi = ?\cost"Txcos BNy
K(L)(L)\[o j; k=Z'°° \“ZY+2}:)2+7\2+ ]3/2"’“1-"

(53)

By substituting equations (48), (49), (50}, and (51) into equation (35),
Agi can be written as

Cst - st -

coshE\\J(Bn)2+ (t—;-)i V(sn) + l sinh[ (s:r) + t—“):] .

(k)

Agy =

By substituting the equations (52), (53), and (54) into equation (48),
the result is

™ eon BB cos maor con 558 con men
T
Z ff Eud—zt)i?:@‘,élm I:a+a):+12*ﬂ
ZZ eo-n[ Vw02 + () _| . ;\J(“)z 'MH("F ] MEW vy a1n UK

(%)

As L approaches o, the integral with respect to L in equation (55)
becomes
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L".
I\ cos E%E COS SNy cos E%E cos sxx

Ea+2k)2+7\2+ ]3/2 ] Ea+2k)2+7\2+ ]1/2

<

dg =

Pm cos Ixp ag " cos EEE-dﬁ
L L

A 5 - /ﬁ
Jo Ea+2k)2+7\2+ :P/ o Ea+2k)2+7\2+[3§112

cos snQ

In reference 19, the first integral on the right is written as

cos qp dp _ _ 3K;(Ra)
(o 1+ 2) 5/ = (56)

0

where q = 1‘Ll end R = \(a+ 2k)2 + A2, Multiplying both sides of equa-

tion (56) by -RdR and then integrating both sides with respect to R
from R to o« glves

cos gp dp _
(52 . Rg)l/é Ko (Ra)

Let L approach . Then, the interference potentlal ¢g5 and its
derivative with respect to z can be written as

(& [ e e

= m:&’«\(-)!mqmuyaq
3 MEP + (x)zj + A2 + (-x)Zu.nhEqu + (-:){l
o]

(C)))
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Sog
™

- qcl\axlE‘ﬁu v )2 ¢ 7\51 [ }

& _-toq‘l(d+2k.)2+7\§] cos sxx dx

- g-[{ ‘u*z‘) halls = anlh[S\EE-c-(n)!eoqueo:uydq
2 eouhEqu + (u)e:) + MRS + (lx)gu.nhE\kE + (n)ﬂ

N - ¢ L (A,3,9) - Ey(X,s,q)
" ;gé ‘Z j; EC(')\,JI.,Q) + c8l%,0,q) ] cosh ’m’ qx cos sxy dq (58)
where
1 ] K Eq( =) gl
Hy = Z 1 [aV(e@ + 2k)© + AZ|cos sna do
ko= —e0 V(o + 2%)2 + 22
0
i3
Ho = f S KoEq(a+2k)2+7\§lcos sxy Ao
0 k=0

¢(\,s,q) = cosh R\’qg + (8n)?
S(A,s,q) = 7\\.!:12 + (s%)®sinh h\lqe + (8x)2

and where 1 has been replaced by cA. The Interference velocity uy

of & doublet symmetrically located in a tunnel with its axis alined with
the axis of the tunnel is given by

U = Up + Ug = U3

='§x_-§;(¢r'q’l)

aq)s m_ =2 (y+2k)2+z2-23<2
Ox - hm e Ey + 2k)2 + 22 + XEP/E

|
]
+

(kx # 0)
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This is for e doublet of strength m/hrx in a tunnel of unit semi-
width. For the genersl case, et the origin,

=- L8] o+ I + (59)
BT 3\ )x=o 320b 3 ; k3

y=0

=0

Equation (59) was solved numerically for the interference wvelocity Us
of & doublet in a square tunnel (A = 1), and the ratio uzb%/m 1s plotted

egainst 1 in figure 9.
c+ 1

Lift Interference in Rectasngular Tunnel
With All Sides Slotted

Consider the 1ift interference for a small 1ifting wing symmetrically
located in a rectangular wind tunnel of semlheight A and unit semiwidth
end with all four sides slotted. The widths of the individual slots are
determined by calculating the points on the walls of the rectangular tun-
nel which correspond to the slot edges of a uniformly slotted clrcular
tummel, with the assistance of a transformation which maps the perimeter
of a rectanglie of semiheight A and unlt semlwldth Intc the perimeter
of a circle of unit radius. In the analysis of thils particular problem
the transverse cross-sectlonal plane of the rectangular tunnel, which has
been previously the y,z-plane, will be taken as the complex Z-plane where
Z =x+ 1ly. The cross-sectional plane of the circular tunnel, which has
previously been treated in terms of the polar coordinates (p,e) will here
be teken as the complex {-plane where § =t + in. In reference 20 the
transformation which maps a rectangle in the Z-plane into a unit cilrcle
in the {-plane 1s given as

= S50 7'Zdn N'Z
¢ en A'Z (60)
or
52 = X = cn _E_A'Z (61)
1+ cn 2A'Z
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and A' is determined from

=K' _
= o A (62)

V] B

where X and iK' are the quarter periods of the preceding Jacobilan
elliptic functions. A method for calculating A' and tables of the
preceding Jacobian elliptic functions are also given in reference 20.

The quadrantal perimeter of a square (A = 1) and the quadrantal perimeter
of a rectangle (A = 1/2) were mapped into the quadrantal arc of a unit
cirecle by using egquation (61) and the results are given in figure 10.

The lift-correction factor for a smaell lifting wing symmetrically
located in a rectangular wind tunnel may be written as

o = 7\?23 - A (vaR)z;o (63)
O'RP O'RI'

since ;éR = (VQR)Z=O for a small 1ifting wing.

The complex velocity in the Z-plane at a point on the x-axis 1s

aw aw af s1¢
z~ TRTTara” T Ca
or
vg = Vg = (64)

The interference velocity for the rectangular tunnel iz thus
at P
VER = (Vlc + Vec)d-—z - VlR ( 5)
In reference (21) d{/dZ is written as

df _ 4
= A (66)
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at the origin. Evsluation of equation (10b)} at the origin gives

= -] =-% (67)
Yie (SZ )p=0 endg

4
2

From the analysis of 1ift interference in a circulsr tunnel (egs. (lha),
(13); (18), and (20))

vog = g’_ccﬁ) (68)

at the origin. The vortex semispan in the circulsr tunnel op is deter-
mined from equation (61) by setting Z = oy (whence, ¢ = cc). The
veloclty vy 1s given by

- - _TI
le - 2xop (69)

at the origin. This differs from vz (eq. (67)) only because of the

change in vortex spsn. If, now, equations (66), (67), (68), and (69)
are substituted in equation (65) the result is

= Lif- L [SEE AT Y I
V2R = By ( o T Cow 1)“ * ¢é] (70)

Substituting this in equation (63) gives, for the lift-correction factor
at the center of the vortex span,

= A I e -1 _ 1\, L1
°r = EanEE-(GC c+ 1 UC) * q;] (70)

In the 1limit as Orp — 0 +thlis becomes
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e G ) o

where m 1is the paresmeter (see ref. 20) of the elliptic functions of
the transformation. The behavior of m i1s such that if A < 0.5 it is
sufficient to use

7 YA R N SV / A 1)
°R 5 (5 c + l) A3 c+ 1 (72p)
When A .= 1.0 (square tunnel), m = 0.5 and
S MBA ) = 0.2 h(% - 1 )
°R x Ca c+ 1 att c+ 1 (72c)
When A > 2.0, the correction factor is approximately
_M'2f2 2 ) - (% - _;L__) d
°r T \3 c+1 %% c+ 1 (724)

Equations (72) apply to wings of small span.

The 1ift correction at the center of the wing has been calculated
for a smell wing in a square tunnel (A = 1) and for a emall wing in two
rectengular tunnels (A = 0.5 and A = 2); the lift-correction factor Bg

is plotted against - i - in figure 11.

Two=Dimensionsal Tunnel

Lift interference.- Consider the problem of the 1ift interference
in a two-dimensional wind tummel with the top and bottom walls slotted.
The wing in the tunnel will be represented by a two-dimensional lifting
vortex located at the origin of the coordinate system, which 1s centered
between the slotted walls. The potential of this vortex in a free fleld
is .
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and the verticsl derivative is

B¢1 . x
oz 2r 42 . 22 -

The interference potential takes the form

P = E (&n sin Q%E sinh 9%%) + Az (13)
n=1

There 1is no axial interference along the tunnél center line (z = Q)

because gfg.= 0. The vertical interference at the origin is simply
X

W2=-§:£=-Ao

Inasmuch as the summation does not contribute to the wall-induced
velocity at the origin, it is sufficlent to study the term A,z Dby

itself. If the multiple-valued function for ®1 18 set equal to zero
at the upstream infinity (z = -») it is apparent that the Fourier series

expansion of P1 at the top wall will result in & constant term - £

plus an odd function aof x. The expasnsion of 8@1/32 will be an odd
Tunction with no constant term. Thus, if the constant terms in @, @p,
and a¢2/az are inserted in the boundery condition at the upper wall
(z = h)

(PT'I' zﬁ: (7’"‘)

the result 1s
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where ¢ = %. The vertical interference veloelty at the origin is given
by

1
c+ 1

W2=-1£-1-

Thus, the interference is found to be downwash at the origin which
varies 1n megnitude from zero for & closed tunnel to a maximum for the
open tunnel. Because

the induced-flow angle at the origin is

Cs A t
S Y - R
%2 8 he+1 (75)
where
d x
¢ = —=— 1o c8Cc = I
xh te 27°
and
4 slot spacing on horizontal walls
h half-height of tunnel
ro open ratio of the uniformly slotted horizontal walls
cy airfoll-section 1ift coefficlent

ol

glrfoll chord

The induced angle is, of course, not constant along the chord of the
airfoil; therefore, the wall-induced flow cen be considered to have a
certain curvature. Thils curvature hes an effect similar to that of camber
in an airfoil, and if the length of the chord of the airfoll is suffi-
ciently great compared to the height of the tumnel, a curvature correction
is required (ref. 3). This curvature can be determined from a complete
solution for ¢, (eq. (73)) under the boundary condition of equation (T4).
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Solid-blockage interference.- Consider the problem of solid-blockage
interference in a two-dimenslonal wind tunnel with top and bottom walls
slotted. The s0lid body in the tunnel will be represented by a two-
dimensional doublet with axis alined with the tunnel axis, end located
at the origin of coordinates on the tunnel axis. The potential of this
doublet in a free field 1s given by

= - A X
N T, 2 (76)
and the vertical derivative by
&l_m XZ
Bz —; 22 (77)
(x2 + z2)

The interference potential qs must satisfy Laplace's equation. Since
@1 1s an odd function of x and an even function of 2z, @ must also
be an odd function of x and an even function of z. Therefore, go
can be written as

00
= B E A, cosh BIZ gin kXX 8
Po o x CO T T (78)
n=1
and the normal derivative by

[+ ]
2. m N Erp sinn EXE gyn Enx
3z a;L k L L (79)

The boundary conditlens to be sstisfied along the slotted walls (z = £h)
are

at z=n"h q>l+q>2+2%(cpl+cp2)=o (80a)
and
at z = -h ' (pl+q>2—1§a;-(q)l+q32)=0 (80b)
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These conditions are satisfied by expanding ¢, and Bcpl/Bz into

Fourler sine series in x along the slotted walls and then solving for
the coefficients of @ that satisfy these equations. Along the

line z = h, equations (76) and (77) can be written as

en s ax
o= - & By oin K (&)
k=1

aq’l_ m . knx

A (&2)
where

L
=2 X sin XXX gx (83)
P LJ; (x2+h25 L

and

L

Cx = 2 —DBX___ gip KEX gx
L (x2 22

0 + n2)

A single integration by parts results in
L cos knx
Op =B | L gy (84)
L o x2 + h°

By substituting equation (83) for B, and equation (84) for C) into

equations (81) and (82), respectively, and then solving equa-
tions (80), (81), and (&) for Ay, the result is

L /nikn krx kxx
f < T cos I " sin = dx
m O

x2 + he

L
ne L cosh XIh 4 7 KX gypp kxh
L L L

SET————

(85)

Ak=-
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-

By substituting equation (85) for A, into equation (78), the result is

L
= hikw | ka0 ke
L L L
> do
0 aa + b
= - B z coshk—’iﬂsinb{.—x

L cosh Exi 4 7 Kt gy kxth
L L L

(86)

= - = cosh qz Bin gx
P2 cosh gh + Iq sinh gh 4 x dq
Jo

o o o
.. m ( 1ge=B - e-dh
c

o

cosh qQZz sin gx
o h) q qx dg

osh gh + 1q sinh ¢]

g
h
= - A0 e"2%(3q - 1) cosh gz sin gx dg
2x cosh gh + Ig sinoh gh
o}

oom || __eMea-1) Qz _,  ax
= %thf \: cosh gin dg (en
]

cosh g + ¢q sinh g h h

where gqh has been replsced by q and c = £. The interference veloc-

B ey

ity uw 1is
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o e9(cq - 1
Y2 = - Bx2 - In2' cosg - i) cosh %% cos %? dq (88)
25h d + cq sinh g

0

At the origin, equation (88) reduces to

[+ -]
m ge~%(cq - 1) aq (89)
Srhe cosh q + c¢q sinh g
0

u2=

Equation (89) has been evaluated numerically, and the axisl-interference-
velocity function u2h2/m is plotted agalnst i T in figure 12.
dc

DISCUSSION

Application of the Results of the Interference Analysis

Consider the problem of determining, say, the correction factor B
for & particuler wing in a square tunnel. The tunnel has four slots In
each horizontel wall, with an open ratio of 0.164. The vertical walls

are closed. Ffom figure k, logg c8C g-ro = 1l.37. After usipg egua-

tion (4#4) to determine c, the value of i T is computed to be 0.82.
c

The wing has an effective span of one~half the tunnel width, and for this
case, figure 8(a) gives the value of the correction factor as -0.062.

If a semispan reflection-plane model of a wing of twice thise span is
tested, the effective helight-width ratio of the tunnel will be 0.5 and
the correction factor will be -0.146.

Compserison With Previous Results

A comperison of the results for the 1ift interference of circulsar
tunnels with the results of reference 13, in which the individusl slots
are considered, shows striking agreement for wings of small spen (fig. 6).
In the case of a l1lifting doublet in the center of the tunnel the'results
agree within 2 percent for only 4 slots and even more closely for greater
numbers of slots. This agreement would seem to be sufficlent proof of
the justification for the basic assumption underlying the present theory,
that the wall can be consldered to be homogeneous. This assumption is
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not made in reference 13. The theory of this reference indicates that
for small numbers of slots, ssy 2 or 4, the 1lift interference varies
apprecisbly with the orientation of the slots. This variation, of course,
cannot be predicted by the present theory.

The results of the anslysis of solid blockage interference are com-
pared with the results of the analysis of reference 9 in figure 7. The
results of this reference are seen to straddle the curve obtained in the
present analysis. The spread in the results of reference 3 masy be due
to the fact that the series used in the caleculations converged very slowly
in the case of ten slots.

The present theory will now be compared with the experimental results
.0of reference 9. For the 10-slot circulsr tunnel the present theory pre-
dilicts a small negative interference. The magnitude of this predicted
interference is about 1/13 that for a closed tunnel and about 1/3 that
for an open tunnel. An inspection of figure T (ref. 9) shows that the
merusured interference in the slotted tunnel checks very closely with
these values. This 1Is a single-point comparilson at the midpoint of the
body, however, so it can not be regarded, in 1tself, as a complete veri-
fication of the theory. In fact, this body was so large with respect to
the tunnel diasmeter that the present theory, based on a doublet in the
tunnel, could hardly be expected to apply.

A much smeller body was tested in the 8-slot octagona]l tunnel of
reference 9. For this tunnel the present theory predicts the value of
the axial-interference-velocilty function to be -0.006. This is less than
5 percent of the magnitude of the interference in a closed circular tun-

ngl. The predicted interference velocity ratio for the l%-inch model
in the slotted tunnel is ;% = =0.0002 for incompressible flow. Even

when multiplied by the compressibility factor (l - M?)-B/é, it is obvi-
ous that this correction is within the ususal experimentel accuracy for
Mach numbers within the range of application of the linearized theory.
For instance, at M = 0.9, the axlal interference wvelocity is approxi-
mately l/h of 1 percent of the free-stream velocity. The experimental
results 1n figure 12 of reference 9 show that the interference was negli-
gible along the whole length of the body at all speeds up to a& Mach num~
ber of about 0.9, Thus, these experimental results are consistent with

_ the present theory with regerd to blockege interference.

Application of the Concept of a Restrlcetion Constant

The concept of a restriction constant can be useful in other ways
than in the direct solution of problems in slotted wall interference as,



k2 cum— NACA RM L53EOTb

for instance, in providing a common basis of comparison for wells with
different slot specings. As an example of this type of problem, consider
a clrculer tunnel with eight evenly spaced slots around the clrcumfer-
ence, with an open ratic of 0.15. Suppose it 1s desired to construct
another cilrcular tunnel with the same Iinterference characteristics as
this tunnel but that 1t 1s also desired to increase the number of slots

to 12. For the given 8-slot tunnel c = % log, u = 0.365. For the same

velue of ¢, the 12-8lot tunnel must heve an open ratio of 0.0T7L.

Using this concept, it is also possible to determine the effects of
changing the shape of the slot cross sectlon. With the realizabtion that
the theory depends upon an essentially potential flow in the slots, for
instance, the question arises as to whether the sharp-edged slots could
not be improved upon. It might be advisable to try smoother shapes in
an attempt to obtaln a closer spproximstion to potential flow in the
slots. The restriction constant 1 could be determined for any slot
shape either analytlcally by calculation of the potential flow through a
group of such slots in cascade or experimentelly by a simple electrical
analogy. Once 1 has been determined the results of the present analysis
could be used to predilct the interference for such slots.

Experimental Determination of the Restriction Constant

If experimental data of sufficient accuracy to permit the evaeluation
of the lift- or blockage-correction factor for a particular slotted tun-
nel are gvallable, the effective value of i-l can be read directly

c
from the curves presented in this paper. Once the value of this parsmeter
is known, corrections masy be computed for other wings in the same tunnel.

Limitations of the Theory

Some question arises as to the range of validity of the equation
for the restriction constant of a slotted wall, Inasmuch as the open ratic
required to obtaln a given value of c¢ decreases rapldly as the number
of slots increases. Since the normsl mass flow remains constant with e,
this requires a continuously increasing normel velocity in the slots
which, although it 1s permissible in the assumed incompressible flow, is
not possible in the actual physical flow. It appeers, from these consid-
erations, that the 1limit of applicabllity of the restriction-constant -~
equation will be determined by the required normal flow velocities rather
than directly by the smallness of the slots. This limitation should be
considered in the application of the results of this analysis to the
design of wind-tunmnel test sections.
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There is, mlsp, some question regarding the use of potentlal-flow
theory in the region nesr the slots. This questlon srises because the
potential theory omits certain flow phenomena, 1ln particular, the pres-
ence of a mixing reglon at the boundary between the moving tunnel air
and the essentially static air outside. The adequacy, for the purpose
of interference computations, of the potential theory must be determined
by experimental studles.

The restriction constent has been determined by assuming the effec-
tive free boundary (@ = O) to be located along the line between the slot
edges. If the boundary were asctually located outside of thls line, the
slot restriction constant would be somewhat lerger. If the slots had a
finlte depth t, instead of belng essentlally sharp-edged orifices, and
if the effective free boundary were at the outside of the slots, the

restriction constent would be approximately 1 = %-loge B+ gL. Actu-
)

ally, it is likely that in the case of slots of considerable depth, the
location of the effective free boundsry would be a function of the local
outflow or inflow. Not only would this make any calculation of the interf
ference questionable but 1t would alsc present the distinct possibility
that the correction factor might be &n unpredictable function of model

I
size and angle of attack. '

1
i
J

CONCLUDING REMARKS

The sclid-blockege interference for a doublet on the tunnel axis
and the boundary interference for 1ifting wings in ecircular, rectangular,
and two-dimensional slotted tunnels have been calculated by substituting
an equivalent homogeneous boundary for the physical boundsry of discrete
slots. In the case of small wings, the results calculated with the
assumption of homogenelty have been found to be consistent with those
calculated for the discrete slots for as few as four slots in a circular
tunnel. Furthermore, availsble experimental results for blockage inter-
ference are consistent with the results of the present analysis.

Through the concept of a wall restriction constent it 1s possible
to reduce the Interference due to all different slioctted~wall configura-
tions for the same tunnel shepe to a single curve. Thus, the number of
computations required to describe completely the interference for a
given-shape slotted tunnel with different slot spaclings and open ratlos
is greetly reduced.

Langliey Aercnautical Laboratory,
Natlional Advisory Committee for Aeronautics,
Langley Field, Va., May 12, 1353.
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Figure 2.- Sketch showing physical arrangement and nomenclature used in
equation for potential difference across a thin, straight slotted wall.
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Figure 3.- Sketch of the transformation of the section of the straight
slotted well between y = 1—%& intc an arc of a circular slotted well.
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Figure 9.- Solld-blockege Interference for rectanguler wind tumnels with
the top and bottom wells slotted. Height-width ratic = 1.0; for thin
slots ¢ = % log, csc %fﬂ'o, vhere N is the mumber of slote in one

horizontal wall and r, i1s the open ratio of the horizontel walls.
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